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ABSTRACT

Water pollution has become a growing threat to human society and natural ecosystem in recent decades, increasing the 
need to better understand the variabilities of pollutants within aquatic systems. This study presents the application of 
two chemometric techniques, namely, cluster analysis (CA) and principal component analysis (PCA). This is to classify 
and identify the water quality variables into groups of similarities or dissimilarities and to determine their significance. 
Six stations along Kinta River, Perak, were monitored for 30 physical and chemical parameters during the period of 
1997–2006. Using CA, the 30 physical and chemical parameters were classified into 4 clusters; PCA was applied to the 
datasets and resulted in 10 varifactors with a total variance of 78.06%. The varifactors obtained indicated the significance 
of each of the variables to the pollution of Kinta River. 
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ABSTRAK

Pencemaran air telah menjadi satu ancaman yang semakin meningkat kepada masyarakat dan ekosistem sejak 
kebelakangan ini dan ini memerlukan kajian berkaitan dengan punca pencemaran dalam sistem akuatik. Kajian ini 
menggunakan dua teknik kimometriks di dalam penganalisaan data, iaitu, analisis pengelasan (CA) dan analisis prinsip 
komponen (PCA). Teknik ini adalah untuk mengenal pasti dan mengelaskan pembolehubah kualiti air ke dalam kumpulan 
persamaan atau ketidaksamaan dan untuk menentukan kepentingannya terhadap kualiti air Sungai Kinta. Enam stesen 
di sepanjang Sungai Kinta telah dipantau untuk 30 parameter fizikal dan kimia dalam tempoh 1997-2006. Menggunakan 
kaedah CA, 30 parameter fizikal dan kimia telah dikelaskan kepada 4 kelompok; PCA telah digunakan untuk dataset 
dan menghasilkan 10 varifaktor dengan varians 78.06%. Varifaktor yang diperoleh menunjukkan kepentingan setiap 
pembolehubah terhadap pencemaran di Sungai Kinta.

Kata kunci: Analisis kluster; analisis komponen utama; ekosistem; kimometriks

INTRODUCTION

Rivers provide the main source of drinking water and will 
remain so for a long time. Coastal areas and seas provide 
valuable resources for the economic development of a 
nation. It is generally accepted that goods and services 
delivered by the coastal and marine ecosystems are worth 
trillions of dollars (UNEP/GPA 2006). According to a report 
on pollution of Malaysian rivers, the main contributors of 
pollution are from land-based sources (Rosnani 2006). 
Major land-based pollution activities identified are urban 
settlements, agricultural runoffs, illegal coastal settlements, 
industrial discharges and sewerage/animal husbandry. In 
an effort to restore the Kinta River, the Department of 
Irrigation and Drainage (DID) (DID 2008) has taken various 
measures, such as waste in the landfill, proper placement 
of silt traps, improved water storage and identifying the 
effects of pollution. Kinta River has been adopted under 
the ‘one state one river’ program with the aim of using 
the river as a place for recreational activities for the 
public (Kalithasan 2008). In addition, a study of water 

quality restoration of the Kinta River is required for it to 
continuously remain the main water source aside from 
serving as an attraction in Ipoh City. 
	 The assessment of water quality contamination 
requires monitoring of a wide range of physical, chemical 
and biological parameters. Water quality analysis is difficult 
because of the large number of available data. Therefore, 
the use of specific statistical method is fundamental in 
obtaining meaningful results. There are two most common 
methods used, namely, cluster analysis (CA) and principal 
component analysis (PCA). 
	 Chemometrics methods are increasingly in use, which 
provide several avenues for exploratory assessment of 
water quality datasets. The application of the statistical 
techniques, such as CA and PCA, helps in the interpretation 
of complex data matrices to better understand the 
identification of possible sources that influence the water 
systems (Helena et al. 2000).
	 In the present study, a datasets of water quality 
variables obtained from the Department of Environment 
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(DOE), Malaysia, for duration of 9 years (1997-2006) were 
subjected to CA and PCA techniques to extract information 
on the similarities and dissimilarities between the variables, 
and the outcome of the analysis may reveal possible 
sources of pollution in the Kinta River. 

MATERIALS AND METHODS

STUDY AREA

Kinta River is one of the main tributaries of Sungai Perak, 
flows from Gunung Korbu at Ulu Kinta, Tanjung Rambutan 
to Sungai Perak. It’s main function is for water supply. 
Hence, there is a need to protect the river’s water quality. 
The Kinta River dam is at the last phase of the Greater 
Ipoh Water Supply II Scheme under implementation by 
Lembaga Air Perak (LAP). Able to provide 639 million 
liters of water per day, it is expected to meet the water 
demand in the Kinta Valley until 2020. The major causes of 
pollution in the Kinta River Basin are industrial discharge, 

improper sewage treatment, residential discharge, sand 
mining, land development and soil erosion (Kalithasan 
2008). The sampling sites for this study are at Tanjung 
Rambutan, Tanjung Tualang, Jambatan Pengkalan, Batu 
Gajah, Kampung Gajah, and Kampung Baru Timah as 
shown in Figure 1. Table 1 shows the sampling sites 
coordinates.

MONITORED PARAMETERS 

Thirty water quality variables studied were dissolved 
oxygen (DO), 5-day biochemical oxygen demand (BOD), 
electrical conductivity (EC), chemical oxygen demand 
(COD), ammoniacal nitrogen (AN), pH, suspended solid 
(SS), temperature (T), salinity (Sal), turbidity (Tur), 
dissolved solid (DS), total solid (TS), nitrate (NO3

-), 
chloride (Cl-), phosphate (PO4

-), arsenic (As), mercury 
(Hg), cadmium (Cd), chromium (Cr), lead (Pb), zinc 
(Zn), calcium (Ca), iron (Fe), potassium (K), magnesium 
(Mg), sodium (Na), oil and grease (O&G), methylene blue 
active substances (MBAS), E. coli and coliform. The basic 

FIGURE 1. Sampling sites on the Kinta River, Perak Darul Ridzwan
 (Source: Alam Sekitar Malaysia)
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statistics of the datasets and the water quality parameters 
are summarized in Table 2. 

CHEMOMETRICS ANALYSIS

The statistical program used to compute chemometric 
analysis; cluster analysis (CA) and principal component 
analysis (PCA) were Microsoft Office Excel 2007 

and XLStat 2012. Prior to analysis, the raw data was 
standardised and the non-detected values were replaced 
with half the detection limit (Reimann & Filzmoser 2000). 

CLUSTER ANALYSIS (CA)

CA is an exploratory data analysis tool for solving 
classification problems and is an unsupervised classification 

TABLE 1. Kinta River basin sampling sites and their coordinates

Site Coordinates (RSO)a Distance (Km) Altituded (m)
Latitudeb (N) Longitudec (E) From source Between stations

Mount Korbue

2PK22f

2PK24
2PK59
2PK34
2PK60
2PK19

518256.14
516816.52
512701.07
499164.57
492824.41
472475.77
462757.07

367777.98
352365.48
346869.20
340907.99
338308.55
342025.07
336011.65

-
15.5
22.4
37.5
43.9
64.8
77.1

-
15.5
6.9
15.1
6.4
20.9
12.3

1599
264
50
28
23
9
7 

a RSO: Rectified Skew Orthomorphic (the map projection system used for mapping in Peninsular Malaysia)
b N: north, c E: east, d Height above sea level, e The headwater of the Kinta River, f Water quality monitoring station

TABLE 2. Mean of water quality variables at different locations of the Kinta River during 1997-2006  

Parameters Tanjung 
Rambutan
(2PK22)
Average

Jambatan 
Pengkalan
(2PK59)
Average

Tanjung 
Tualang
(2PK24)
Average

Batu 
Gajah

(2PK34)
Average

Kampung 
Gajah

(2PK19)
Average

Kg. Baru 
Timah

(2PK60)
Average

DO
BOD
COD
SS
pH
NH3-NL
Temp.
EC
Salinity
Turbidity
DS
TS
NO3
Cl
PO4
As
Hg
Cd
Cr
Pb
Zn
Ca
Fe
K
Mg
Na
O&G
MBAS
E. coli
Coliform

7.5
3.0
45
998
6.9
0.3
26.4
454
0.3
554
218
1216
0.5
124
0.2

0.003
0.004
0.002
0.002
0.015
0.027
5.1
0.4
3.9
6.9
59.8
0.5
0.02

12819
40146

5.72
11.26
49.36
381
7.01
0.63
27.15
131.11
0.03
379

61.66
443
0.75
5.99
0.16
0.003
0.003
0.001
0.002
0.01
0.04
8.59
0.46
4.56
1.24
7.18
0.66
0.03

53391
326782

2.3
7.7
43.7
505
6.9
1.1
27.5
197.4
0.1
345
93.3
599
1.0
8.4
0.2
0.01

0.0003
0.002
0.003
0.01
0.05
17.5
0.4
4.5
2.4
9.3
0.6
0.02

46783
97914

3.5
4.9
35.7
245.2
29.7
1.6
27.9
715.8
0.3

312.4
210.5
479
1.5
81.5
0.3
0.01

0.0002
0.002
0.004
0.01
0.03
19.1
0.3
5.3
5.5
41.3
0.7
0.1

43856
162615

2.7
2.6
23.5
91.4
6.7
0.2
28.3
141.6
0.04
121.5
77.7
169
1.0
7.3
0.3

0.007
0.0002
0.002
0.003
0.01
0.03
11.9
0.4
7.2
2.7
6.3
0.6
0.03

11488
41827

4.3
3.9
29.5
209
7.0
0.4
27.8
562
0.3
259
231
440
1.3
105
0.3
0.01

0.0002
0.002
0.003
0.01
0.03
14.7
0.3
5.0
5.9
45.8
0.6
0.1

22139
61915 

Note: A total of 240 samples were collected from 1997 - 2006
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used to normalised data by measuring either the distance 
or the similarity between the objects to be clustered. In 
CA, the variables are grouped into classes (clusters) based 
on similarities within a class and dissimilarity between 
different classes. This analysis is applied to discover the 
similarities or dissimilarities of the variables. 

PRINCIPAL COMPONENT ANALYSIS (PCA)

The result of PCA was generated in the form of principal 
components (PCs) known as eigenvalues. The eigenvalues 
of the correlation matrix measure the amount of the 
variation explained by each factor and will be the largest 
for the first factor and become smaller for the subsequent 
factors. Varimax rotation was applied on the PCs with 
eigenvalues more than 1 (Kim & Mueller 1987) in order 
to obtain new groups of variables known as varimax 
factors (VFs). A factor with an eigenvalue more than or 
equal to 1 is usually considered as being of statistical 
significance (the Kaiser criterion). The higher the loading 
of a variable (either positive or negative), the more that 
variable contributes to the variation accounted for by the 
particular varifactors. Only loadings with absolute values 
greater than 60% are selected for the factor interpretation 
(Jolliffe 1986). In this study, the factor loading for each 
of the variable correspond to the significant impact of the 
variable to the river water quality and this will relate to 
the sources of the pollution. 

RESULTS AND DISCUSSION

The application of chemometrics techniques such as cluster 
analysis (CA) and principal component analysis (PCA) has 
been applied for analyzing environmental data and drawing 
meaningful information (Boyacioglu & Boyacioglu 2010; 
Bulut et al. 2010). These techniques allow identification of 
the possible sources that influence the water quality and are 

responsible for the variations in the water quality, which 
therefore offers valuable tool for developing appropriate 
strategies for effective management of the water resources.
In this study, an evaluation of thirty water quality variables 
monitored by Department of Environment (DOE) during the 
period from March 1997 to November 2006 was subjected 
to cluster analysis (CA) and principal component analysis 
(PCA) to extract information about the similarities and 
dissimilarities between the water quality variables; and 
to transform the original variables into new, uncorrelated 
variables.

CLUSTER ANALYSIS (CA)

CA was applied to the water quality datasets of Kinta River 
in order to classify the thirty water quality variables based 
on similarities and dissimilarities between the variables. 
Performing CA on variables rather than cases is preferred in 
most research studies (Yalcin et al. 2008). Figure 2 shows 
the resulted dendrogram.
	 Clustering of the thirty water quality (WQ) variables 
produced 4 main clusters (Figure 2). Cluster 1 formed by 
DO, Cd, Cr and Pb corresponds to either anthropogenic 
activities such as wastewater discharge, natural causes 
or river flow (Otto 1998). Cluster 2 consisted of BOD, 
pH, NH3-N, Temp., PO4, As, E. coli and coliform may 
be caused by manure, organic matter and the leaching of 
fertilizer residue on agricultural land into the river system. 
According to a study by Azyana and Nik Norulaini (2012) 
on the land use activities of Kinta River, BOD and NH3-N 
were the variables that were most related to agricultural 
activities. The presence of BOD in the river might be 
caused by the manure and the organic matter while the 
NH3-N is caused by the non-biodegradable matter. The 
findings are also consistent with the study by Silva et al. 
(1999) who reported that BOD, total nitrogen and phosphate 
contamination were due to anthropogenic activities such 

FIGURE 2. Dendrogram of clustering of the water quality variables 
from the Kinta River using Ward’s method
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as fertilizer usage, organic pollutants release and domestic 
sources. Cluster 3 consisted of COD, SS, Cond., Sal., 
Tur., DS, TS, Cl, Zn, Ca, Fe, K, Mg, Na, Oil & Grease 
and methylene blue active substances (MBAS). These 
variables may be related to the industrial activities such as 
pulp and paper production located along the Kinta River. 
Cluster 4 formed by NO3 and Hg that could be related to 
organic pollution, household wastes, agricultural sources 
and chemical industries. Silva et al. (1999) also reported 
that nitrate contamination resulted from activities such as 
fertilizer usage. 
	 The CA technique applied to the water quality data 
was able to relate the water quality variables with the 
sources of contamination. Thus, this approach can be 
used in offering reliable technique in classifying the water 
quality variables based on similarity or dissimilarity of 
each variables. However, in cluster analysis, the clustering 
and the number of existing clusters are only a qualitative 
statement. Therefore, as suggested by Astel et al. (2006), 
cluster analysis should be confirmed in an additional step 
such as applying the principal component analysis (PCA) 
technique. 

PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA is the most powerful pattern recognition technique 
that provides information on the most significant variables, 
which describes the whole dataset by excluding the 
less significant variables with minimum loss of original 
information (Helena et al. 2000). PCA was applied to the 
normalized dataset to compare the compositional patterns 
between the water quality variables and to identify the 
components that influence each one. PCA of the entire 
dataset evolved ten principal components (PCs) with 
eigenvalues greater than 1 explaining about 78.06% of the 
total variance in the water quality dataset. 
	 A rotation of principal components can achieve 
a simpler and more meaningful representation of the 
underlying factors by decreasing the contribution to 
PCs of variables with minor significance and increasing 
the more significant ones by means of varimax rotation 
(Helena et al. 2000). Varimax rotations applied on the 
PCs with eigenvalues greater than 1 are considered 
significant (Reghunath et al. 2002) in obtaining new 
groups of variables called Varifactors (VFs). VF coefficients 
having a correlation greater than 0.75, between 0.75 and 
0.50 and between 0.50 and 0.30 are considered to have 
‘strong’, ‘moderate’ and ‘weak’ significant factor loading, 
respectively (Reghunath et al. 2002). Although rotation 
does not affect the goodness of fitting of the principal 
component solution, the variance explained by each factor 
is modified.
	 A varimax rotation of the principal components led to 
10 rotated PCs (called henceforth varifactors). Eigenvalues 
and loadings of these varifactors are displayed in Table 3. 
The first factor accounts for 25.1% of the total variance 
(Table 3) and highly participated by Cond. (0.968), Sal. 
(0.981), DS (0.993), Cl (0.990), Mg (0.980), Na (0.986), Ca 

(0.692), K (0.701) and MBAS (0.717) of which the factor 
loadings between moderate to strong loadings. This factor 
may be interpreted as a measure of dissolved solids. This 
could also likely resulted from dissolution of limestone 
and gypsum soils which can be simplified as soil erosion 
(Vega et al. 1998). 
	 The second factor explains 9.2% of the variance in 
the WQ data (Table 3). It consisted of high loadings from 
three variables: SS (0.933), TUR (0.818) and TS (0.850); 
and moderate loading from COD (0.562). These variables 
are related to surface runoff sources which may originated 
from agricultural fields, domestic areas and waste disposal 
sources. 
	 The third factor describes 6.2% of the variance in the 
dataset obtained a high loadings from BOD (0.852) and 
coliform (0.675) (Table 3). These variables are indicators of 
microbial pollution of which the sources of these bacteria 
include failing septic systems, wastewater treatment plants 
and the application of manure to agricultural lands (Singh 
et al. 2005).
	 The fourth factor accounts for 7.6% of the variance 
in the dataset (Table 3). It exhibits high loadings from Cd 
(0.860) and Pb (0.837) and moderate loadings from Cr 
(0.670). This relates to the toxic metals that may be due to 
the discharges from several industries along the river such 
as metal fabrication, metal furnishing and electroplating 
and electrical/electronic industries (Singh et al. 2005).
The fifth factor explains 6.6% of the variance in the 
dataset (Table 3). It exhibits high loadings from DO 
(-0.807) and Temp. (0.723) and moderate loading from 
As (0.561). Loadings of these variables can be indicative 
of mineral oxidation processes. Specifically, association 
of As with DO can be related to the redox-sensitive nature 
of iron oxides and sulphide minerals since exchange 
of substantial amounts of As between solid phases and 
the surrounding water can results from redox-enhanced 
dissolution reactions. Similar relationship was suggested 
by Hinkle (1997) who analysed 47 samples of filtered 
ground water from Willamette Basin (USA) and reported 
that the median As concentration in the low DO samples 
(DO concentrations < 1.0 mgL-1) was significantly higher 
than that in the well-oxygenated ones (DO concentrations > 
1.0 mg L-1). Besides, Kurosawa et al. (2005) hypothesized 
that co-association of As with low levels of DO in water 
may be explained by the associated high NH3-N levels. 
Microbial decomposition of organic matter results in 
consumption of high amounts of DO and production of 
NH3-N, thus leading to a low oxidation-reduction potential 
which inconsequence accelerates release of As in anoxic 
environments from sediments to the surrounding water. 
As in nature can be found at low level, the anthropogenic 
activities might have triggered the concentration of this 
metal in this river water. Since As is not volatile and soluble 
in water it can be found from the used of insecticides to 
kill off weeds surrounding the agricultural area.
	 The sixth factor explains 4.8% of the variance (Table 
3). It demonstrates high loading of NO3 (0.709) and 
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TABLE 3.  Loadings of 30 variables on components rotated according to the Varimax method

VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8 VF9 VF10

DO -0.807
BOD 0.852
COD 0.562
SS 0.933
pH 0.918
NH3-N 0.718
TEMP 0.723
COND 0.968
SAL 0.981
TUR 0.818
DS 0.993
TS 0.850
NO3 0.709
Cl 0.990
PO4 0.799
As 0.561
Hg 0.643
Cd 0.860
Cr 0.670
Pb 0.837
Zn
Ca 0.692
Fe 0.784
K 0.701
Mg 0.980
Na 0.986
O&G 0.895
MBAS 0.717
E-coli 0.578
Coliform 0.675
Eigenvalue 7.633 3.329 2.935 2.064 1.533 1.311 1.283 1.162 1.128 1.042
Variance (%) 25.128 9.239 6.182 7.607 6.600 4.762 4.937 4.017 5.002 4.590
Cumulative (%) 25.128 34.368 40.550 48.156 54.756 59.518 64.455 68.472 73.474 78.064

moderate loading of Hg (0.643). The presence of NO3 
reflect organic pollution and relate to anthropogenic point 
sources like domestic sewage and additionally derive from 
agricultural areas where inorganic nitrogen fertilizers are 
in common use. The contributors of Hg could be from 
the bleaching process of the textile industries, disposal of 
household items such as compact fluorescent light bulb 
and waste from chemical industries.
	 The seventh and eighth factors account for around 5 
and 4% of the variance, respectively. The seventh factor 
has a high loading of Fe (0.784), while the eighth factor 
high loading of O&G (0.895). The high loading of Fe 

could relate to the industrial coatings that are applied to 
metals so as to give their surfaces rust-resistant properties, 
also related to activities like paints, metal-finishing and 
electroplating industries. The O&G could relate to surface 
runoff from road drainage that contain fossil fuel from 
vehicles as a result of leakage.
	 The ninth factor demonstrates 5.0% of the variance 
of the data (Table 3). It is characterized by high, exclusive 
loadings from pH (0.918) and NH3-N (0.718). The strong 
loading of pH could be due to seasonal changes and human 
activities. On the other side, ammonia is present naturally 
in ground and surface water. It is one of the products of the 
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microbiological activity and is indicator of septic pollution 
especially when associated with NO3.
	 Finally, the tenth factor demonstrates 4.6% of total 
variance (Table 3). It is distinguished with high loading 
from PO4 (0.799) which indicate the waste from fertilizer 
used in agricultural activities, moreover a wide range of 
fertilizer might also come from urban landscaping and 
moderate loading from E.coli (0.578) associated with 
wastewater treatment plants or animal husbandry.

CONCLUSION

In this study, the CA helped to group the datasets into 
four clusters of similar characteristics pertaining to 
water quality characteristics and pollution (natural and 
anthropogenic) sources. PCA of the datasets evolved ten 
principal components (PCs) with eigenvalues greater than 
1 explaining about 78.06% of the total variance in the 
water quality datasets. The results of the PCA suggested the 
pollution sources responsible for water quality variations in 
Kinta River was mainly related to anthropogenic activities 
generated from wastewater discharge, agricultural activities, 
inorganic and organic pollution generated from the industrial 
activities along the river. Thus, the chemometric statistical 
techniques served as an excellent exploratory tool in analysis 
and interpretation of complex dataset on water quality in 
understanding the sources of pollution of Kinta River.
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